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Abstract: - It is recognized that the classic probability theory is cyclically defined among a small set of coupled 
operations. The sample space of probability is not merely 1-D invariant structures rather than n-D variant 
hyperstructure where the types of probability events encompassing those of joint or disjoint as well as 
dependent, independent, or mutually-exclusive ones. These fundamental properties of probability lead to a 
three-dimensional dynamic model of probability structures constrained by types of sample spaces, relations and 
dependencies of events. A reductive framework of general probability theory is rigorously derived from the 
independently defined model of conditional probability. This basic study reveals that the Bayes’ law needs to 
be extended in order to fit more general contexts of variant sample spaces and complex event properties. The 
revisited probability theory enables an extended mathematical structure known as probability algebra for 
rigorous manipulating uncertainty events and causations in formal inference, qualification, quantification, and 
semantic analysis in contemporary fields such as cognitive informatics, computational intelligence, cognitive 
robots, complex systems, soft computing, semantic computing, and brain informatics. 
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1. Introduction 
 
 
 

Probability theory is a branch of mathematics that 
deals with uncertainty and probabilistic norms of 
random events and potential causations as well as 
their algebraic manipulations. The development of 
classic theories of probability can be traced back to 
the work of Blaise Pascal (1623-1662) and Pierre de 
Fermat (1601-1665) [Todhunter, 1865; Venn, 1888; 
Hacking, 1975]. Many others such as Jacob 
Bernoulli, Reverend T. Bayes, and Joseph Lagrange 
had significantly contributed to classic probability 
theory. Theories of probability in its modern form 
was unified by Pierre Simon and Marquis de 
Laplace in the 19th century [Kolmogorov, 1933; 
Whitworth, 1959; Hacking, 1975; Mosteller, 1987; 
Bender, 1996]. Set theories [Cantor, 1874; Zadeh, 
1965, 1968, 1996, 2002; Artin, 1991; Ross, 1995; 
Pedrycz & Gomide, 1998; Novak et al., 1999; 
Potter, 2004; Gowers, 2008; BISC, 2013; Wang, 
2007] provide an expressive power for modeling the 

discourse and axioms of probability theories. A 
theory of fuzzy probability and its algebraic 
framework has been presented in [Wang, 2015e]. 
 

     The philosophy of probability theory is analogy-
based where large-enough experiments are required 
for establishing prior probabilistic estimations and 
norms in a certain sample space. The main 
methodology of classic probability theory is a black 
box predication for a set of uncertain phenomena of 
a complex system without probing into its internal 
mechanisms. Although the range of prior probability 
for any predicated event is [0, 1], the range of 
posterior probability is immediately reduced to {0, 
1} after the given event has realized in a given 
probability space.  

It is recognized that the classic probability theory 
is cyclically defined among a set of highly coupled 
operations on probabilities of conjunctive, 
disjunctive, and conditional events. This paper 
presents a basic study on the revisited theory of 
probability, which extends classic probability theory 
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to a comprehensive set of probability operations. 
Some fundamental challenges and potential pitfalls 
of classic probability theory are formally analyzed 
in Section 2. The mathematical model of general 
probability is introduced in Section 3 based on 
rigorous models of the universe of discourse and 
sample spaces of probability. The framework of the 
general probability theory is embodied by 
probability algebra as introduced Section 4. An 
extended set of algebraic operators on the revisited 
mathematical model of probability is rigorously 
defined in Section 5, which extends the traditional 
probability operations of addition, multiplication, 
and condition to subtraction and division. The 
conventional mutually coupled probability 
operations are independently separated in a 
deductive structure on the basis of the refined model 
of conditional probability. Formal properties of 
probability and rules of algebraic operations on 
general probabilities are summarized in Section 6. 
Practical examples are provided throughout the 
paper for elaborating each of the fundamental 
definitions and operations in the general theory of 
probability. The revisited theory of probability can 
be used to solve a number of challenging problems 
in classic probability theory such as complex 
sequential, concurrent, and causal probabilities as 
well as real-time probabilities under highly 
restrictive timing constraints. 

 
 
 

2. Pitfalls of the Classic Theory of 
    Probability  
 
 

Potential pitfalls of classic probability theory stem 
from the highly coupled dependency between the 
key probability operators and the overlooking of the 
variant sample spaces in probability modeling and 
manipulations. In order to deal with the cyclically 
defined framework of classic probability theory, 
classic literature and textbooks describe the highly 
coupled probability operations in various 
approaches merely dependent on where the loop is 
subjectively cut. 
 
 
2.1 Highly Coupled Dependency among 
Probability Operators        
 

     Definition 1. The essence of probability P is a 
quantification function ρ that maps an event e in a 
sample space S into a unit interval  = [0, 1], which 
is determined by a relative ratio between the size of 

the event (number of expected occurrences) and the 
size of the sample space, i.e.:  
 

 {( , ( )) | , ( ) : [0,1]}P e P e e S P e eρ∈ = → =          (1) 
 
 
 

     The classic theory of probability [Kolmogorov, 
1933; di Finetti, 1970; Johnson & Bhattacharyya, 
1996; Lipschutz & Lipson, 1997] was somehow 
defined on a cyclic tautology as illustrated in Fig. 1. 
In the framework of classic probability theory, 
conjunctive probability on the left-hand side is 
defined based on disjunctive probability on the 
right. Further, the disjunctive probability is 
dependent on conditional probability that, inversely, 
is defined by the disjunctive probability in an 
interlocked loop. 
 
 
 

( )
( ) ( )

( )
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P A P B
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+

− ∩

( )
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+
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( )

P A BP B A
P A
∩

=

 
 
 

              Fig. 1. The highly coupled dependency in  
                               classic probability theory 
      
     Lemma 1. The paradox of classic theory of 
probability is that none of the three basic operators 
for conjunctive, disjunctive, and conditional 
probabilities is independently definable in the 
framework, so that an interlocked relation among 
the probabilistic operators is formed, i.e.:  
 
 

( )  ( )  ( | )P A B P A B P B A∪ → ∩ ↔               (2) 
 
 

     The highly coupled dependency between key 
probability operators results in numerous problems 
in probabilistic reasoning, theorem proving, and 
applications in classic probability theories. 
 
2.2 The Impact of Variant Sample Spaces of 
Probability 
 
 
 

It is observed that, in general, the sample space of 
probability is dynamically variable rather than 
merely constant as traditionally perceived.  
 
     Example 1. Assume a bag has a black ball and a 
white ball denoted by two events B and W, 
respectively, as illustrated in Fig. 2 where the ball 
drawn in the previous round will not return to the 
bag. The probabilities for getting a black or white 
ball in the first trail are, P(B) = P(W) = 0.5, 
respectively. However, given the first draw was a 
white ball, the second trial will result in P(W | W) = 
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0 and P(B | W) = 1. Or in other case, P(B | B) = 0 
and P(W | B) = 1 given the first draw was a black 
ball. In both cases for the second trail, the sample 
space has been changed from |S| = 2 to |S’| = 1. 
 

   

0.5 

0.5 

1 

0 

0 

1 

B,W 

W|B 

B|W 

B 

W 

B 

W 

 |S| = 2 |S’| = 1 

 
 

Fig. 2. Dynamic conditional probability in  
variant sample spaces 

 
     This explains why most illustrations and case 
studies on classic probability theory request that, in 
a typical layout, a ball drawn from the bag must be 
returned after each trail. However, this practice has 
over simplified the general context of probability 
theory. 
 
     Lemma 2. Let 1 2 and E E  are two sets of arbitrary 
events, the  sample space of probabilistic events as 
the context of probability is variant in general in a 
series of probabilistic trails, i.e.:  
 

1 2 2 1 1 2( , ) ( | ) ( | )S E E S E E S E E≠ ≠                  (3) 
 

where 1 2 2 1 1 2( , ),  ( | ),  and ( | )S E E S E E S E E  represent 
the sample spaces for events 1 2 and E E , 2 1 after E E , 
and 1 2 after E E , respectively.        
     Proof. Assume the probabilistic sample space S 
includes two sets of arbitrary events 1 2 and E E . 
Lemma 2 is proven by considering the sizes of the 
sample space under four different scenarios as 
follows:    

 

 

 

1 2 1 2

0
1 2 1 1 1 2

1 2 1 1 1 2 1 2

, , ,  and ,
  )   Invariant  and independent :
       | ( , ) | = | | = | | | |,  
  )  Invariant  and dependent :
       | ( , ) | = | | = | | | | | |,  
  ) Variant

E E S E S E S
i S E

S E E S E E E E
ii S E

S E E S E E E E E E
iii

∀ ⊂ ⊂

+ ∩ = ∅

+ − ∩ ∩ ≠ ∅

 

2 1 1 2 1 2

1 2 1 2 1 2

1 2

  and independent :
       | ( | ) | = | ' | = ( | | 1) + | |,  
  ) Variant  and dependent :  
       | ( | ) | = | '' | = ( | | 1) + ( | | 1) | |,  
                              

 | |

S E
S E E S E E E E

iv S E
S E E S E E E E

E E
S

− ∩ = ∅

− − − ∩
∩ ≠ ∅

⇒       
0| | | ' | | '' |S S S≠ ≠ ≠

(4)                                        

 

 
 

     According to Lemma 2, the basic assumption of 
classic probability theory on invariant sample spaces 
is a simplified special case (i) or (ii) in the general 
dynamic sample space, which is illustrated in Fig. 2. 
The finding in Lemma 2 indicates that Bayes’ law of 
conditional probability is not generally true in the 
generally variant probability space, which will be 
proven in Corollary 4. 
 
 

3. Mathematical Models of 
    the General Probability Theory  
 
The mathematical model of the extended probability 
theory is defined in the universe of discourse of 
probability and the dynamic sample space based on 
complex event relations. Set theory is adopted as a 
unified foundation for the mathematical model of 
probabilities and their algebraic operations.   
 
3.1 The Universe of Discourse of General 
Probability 
 

In addition to the typical axioms, as summaries in 
Table 3 in Section 4, the formal model of the 
universe of discourse for the extended theory of 
probability is a foundation that specifies the general 
context and layout of probability theory, which will 
be introduced after some conceptual preparations 
given in Definitions 2 through 4. 
 
     Definition 2. The set of states, Ξ, with individual 
bivalent probabilistic status  ,  ,  1 | |i i iξ ξ ∈Ξ ≤ < Ξ , of 
entities and/or causations is expressed as follows: 

 
 

 

| |

1
{ | ( ) [0,1] }i i i

i
fR ξ ξ ξ

Ξ

=

Ξ ∈ ∧ ∈Ξ

              (5) 
 

where 
 

1

n

i
i
R ξ
=

 is called the big-R notation that denotes 

a set of recurrent structures or repeated behaviors 
[Wang, 2008b].    
     Definition 3. The set of events, E, is a subset of 
changed states in Ξ as identified by a discrete 
differentiation [Wang, 2007, 2014c], i.e.:    
              
 
 

 

'
' 1 '

'

1

'

   { ,  ,  }

t t
t t t t

n
t ti

i i i i i
i

d
dt t t

de iff e
dtR ξ ξ ξ ξ

= −

=

Ξ ⊕ ΞΞ
= = Ξ ⊕Ξ

−

= = ⊕ ∈Ξ ∧ ∈

E

E

  (6) 

 
 

     Definition 4. The set of probability distribution,
P , is a function ρ that maps each event ie ∈E  into 

the unit interval , i.e.:                  
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1

1

( ) ( )

          ( :  ),  (0,1]

n

i
i
n

i i
i

e

e

R

R ρ

=

=

= → =

 

   

P E P

 

             (7) 

 
 

     The universe of discourse of probability can be 
modeled based on the three essences as introduced 
in Eqs. 5 to 7.        
     Definition 5. The universe of discourse of 
general probability theory, U, is a triple:  
 

 ( , , )ΞU E P

                            (8) 
 

where Ξ denotes a finite set of states, E a finite set 
of events, and P a finite set of probability 
distribution. 
 
3.2 The Hyperstructure of Sample Spaces of 
the General Probability Theory 
 
On the basis of the universe of discourse of general 
probability, a set of fundamental properties of events 
and sample spaces in probability theory can be 
formally analyzed.   
     Definition 6. The relation, R, between two sets 
of events E1 and E2 in U is classified into the 
categories of joint and disjoint as follows:      

 

1 2

1 2

      // Joint
      // Disjoint

E E
E E

≠ ∅
 = ∅

∩
∩

                    (9) 

 

     Definition 7. The dependency, D, between two 
sets of events E1 and E2 in U is classified into the 
categories of independent, dependent, and mutually-
exclusive (ME) as follows:      

 

1E →

( )

2
'

1 2 2

1 2

Independent

D

  

ependent
Mutually-exclusive 

               // 

( )     // 
( )     ME // 

E
E E E
E E




→ =
 → = ∅

   (10) 

 

where → denotes a trigger relation or causation, ME 
is a special type of event dependency in which the 
sets of events never appear simultaneously or 
concurrently.         
     It is noteworthy that the event dependency is 
different from the event relation according to 
Definitions 7 and 6. The latter denotes that two sets 
of events may or may not share certain common 
events. However, the former represents that a set of 
events E2 may or may not be influenced by another 
set of events E1 in consecutive interactions via 
dynamic changes of the variant sample space. 
 
     Definition 8. A simple first order sample space S 
of a probabilistic layout is a set of all potential 

events expected in trails as a subset of the power set 
of the general events S ⊂ E in U, i.e.: 
 

 

1

1 1

{ | }

  { | }
i

n

i i
i

nn

ij ij i
i j

S E E S

e e E S

R

RR
=

= =

⊆ ⊂

= ∈ ⊆ ⊂

 E

E

 

 

          (11) 

 

     The sample space of probability forms the 
context of a given problem in probabilistic analysis 
and modeling.  
     Example 2. Let an unfair coin with 0.68 : 0.32 
probabilistic weights for the events head (H) and tail 
(T), respectively. The simple first order sample 
space S1 can be modeled according to Definition 8 
as follows: 

  
1

2 2

1
11

1 2

{ | ( ) 1}

   { ( ) 0.68,  ( ) 0.32}

i S i
ii

S e P e

e H e T

R


 

  

  

 

which is invariant, disjoint, and mutually-exclusive. 
      

     Example 3. Given a complex first oder sample 
space S2 with five white balls (W) and five black 
balls (B) in a bag possessing 0.45 : 0.55 event 
probability due to the roughness between balls in 
different colors. S2 can be modeled according to 
Definition 8 as follows: 

which is disjoint, invariant or variant subject to 
independent or dependent events. 
 
     Corollary 1. The size of a sample space ,  | |S S , 
is determined by the number of all distinguishable or 
nonredounded events in S in U, i.e.:   

        

1 1 11 1

| | | | | { | } |
i in n n nn

i ij ij i
j i ji i

S E e e E SR RR
= = == =

= ∈ ⊆

 



   (12) 

 
     Proof. Corollary 1 is proven on the basis of 
Definition 8 in an invariant sample space as follows: 
 

 

   

  

1 1 1

' '
1 1

1

| ,

| | | |,  | | 1

      | |

i

i

nn n

i ij ij i
i i j

nn

ij ij i j ij i ij
i j

n

i
i

E S e e E S

S e e e e E e

E

R RR
= = =

= =

=

∀ ⊆ ∧ ∈ ⊆

≠ ∧ ∈ ∧ ≡

=

∑∑



 

   (13) 

 

    
2

  

  

2 5 2 5

2
1 11 1

5 5

 1 2
1 1

5 10

 

1 6

{ | ( ) 1}

  { ( ) 0.55 / 5), ( ) 0.45 / 5)}

  { ( ) 0.11), ( ) 0.09)}

ij S ij
i ji j

j j
j j

k k
k k

S e p e

e B e W

e B e W

R R

R R

R R

  

 

 

 

  

  

 
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     Sample spaces of complex probabilistic problems 
are often to be higher-order hyperstructures as the 
context of sequential, concurrent, and conditional 
probabilities.         
 

     Definition 9. An Order-m sample space mS  is a 
set of potentially m-ary combinational events for a 
probabilistic structure determined by multiple 
Cartesian products  

1
, 

m

i i
i

S S
=

⊆× E in U, i.e.: 

 

1 2

 
1 2 1 2

1 2

 

                        

 

1

... ... ...
1 1 1

2

2

1 1

    { ... ( | )}

when 2 or 3,

             { ( | )}

      

m

i ik km k m k
m

ji

m
m

i
i

nn n
m

i i i i i i i i
i i i

i j

nn

ij ij i i i j j j
i j

S S

e e S e E S

m m
S S S

e e S e E S e E S

RR R

RR

=

= = =

= =

= ∈ ∧ ∈ ⊆

= =

= ×

= ∈ ∧ ∈ ⊆ ∧ ∈ ⊆

×

 

 

3

3

1 1

   

             { |

                                                     }

ji k

i j k

nn n

ijk ijk i i i j j j
i j j k

k k k

S S S S

e e S e E S e E S

e E S

RRR
= = =

× ×

= ∈ ∧ ∈ ⊆ ∧ ∈ ⊆

∧ ∈ ⊆



                             (14) 
 
     It is noteworthy that there are two types of 
sample spaces in the revisited probability theory 
called the invariant and variant sample spaces, 
respectively. According to Lemma 2 the variant 
sample space is more general in probability theory 
where the prior and posterior sample spaces are 
different in each step of a series of probabilistic 
experiments. An example of the variant sample 
space is such as n balls in a bag where the sample 
space continuously reducing along a series of trails 
if the balls drawn will not return to the bag. Another 
example of the generally variant sample space is a 
set of bacteria where their size is exponentially 
increasing in a series of probabilistic experiments. 
 
     Example 4. On the basis of 

1 { 0.68,  0.32}S H T    as given in Example 2, an 
invariant 2nd-order sample space for two 
consecutive or concurrent tosses of the uneven coin, 

2
1S , can be derived according to Definition 9 as a set 

of composite events , , , andHH HT TH TT as follows:  
 
 

  

2 2 2 2
2 2
1 1

1 11 1

 

{ ( | 1)}

  { 0.68 0.68 0.46,  0.68 0.32 0.22,

        0.32 0.68 0.22,  0.32 0.32 0.10}

ij i j ij ij
i ji j

S e e e e S e

HH HT

TH TT

RR
  

    

      
     


 

  

     Example 5. Consider the case 

  

5 10

2
1 6

{ 0.09, 0.11}
i i

S W BR R
 

    as given in Example 3 

there are five white balls (W) and five black balls 
(B) in a bag with 0.45 : 0.55 biased probabilistic 
weights in different colors. A variant 2nd-order 
sample space for two consecutive draws of the 
uneven balls, 2 '

2S , with the set of combined events 
, , , andBB BW WB WW can be formally modeled 

according to Definition 9 as follows:  
 
 
 
 
 

2 2

2 2

2

2 2 2 2
2 ' 2 '
2 2

1 11 1

 
'
2 2

'
2 2

'

'
2

{  ( ( | ) | | | 1)}

| | | | 0.45
   { 0.55 0.28,

1 0.11| | | |  

| | | | 0.55
         0.45 0.27,

1 0.09| | | |  

| |
         

| |

ij i j i ij ij
i ji j

W W

i

B B

i

B

S e e e e e S e

E E
BW B B

S S b

E E
WB W W

S S w

E
BB B

S

RR
  

    

    


   






2

2 2

2
'

'
2 2

| |  0.55 0.11
0.55 0.27,

1 0.11| |  

| | | |  0.45 0.09
         0.45 0.18}

1 0.09| | | |  

iB

i

iW W

i

E b
B

S b

E E w
WW W W

S S w

 
  



 
   


 

 
where the variant sample space 2 '

2S  encompasses 
four complex events with individually modified 
probabilities by reflecting influences between a 
sequential or conditional event on another event in 
the combinations.  
 
     Contrasting Examples 4 and 5, it is obvious that 
an invariant sample space is merely a special case of 
the variant ones as formally described in Definition 
9.  
    
     Theorem 1. The variability of probabilistic 
sample spaces, ,  S S ⊆ Ξ  in U is general in a serial 
probabilistic experiments 

1 2E E→  due to the 
removal or disappearance of an event 1,  i ie e E∈  
after the previous trial, i.e.: 
 
 
 
 
 
 

   

 

1 2 1 2

1 2
' '
1 2 1 1 1

( , ),  
   ' , where  = , and

                           '  =  = \ ,   

S E E E E
S S S E E

S E E S e e E

∀ →
≠ ∪

∪ ∈

    (15) 

 
 
 
 
 

     Proof. Theorem 1 can be proven on the basis of 
Definitions 8 and 9 as follows:   
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1 2 1 2 1 2

1 2 1 2

1 2 1 1

'
1 1 1 1 1
'
2 2

' ' ' '
1 2 1 2

1 2 1

, , ,  and ,
) Before the trail:

    ( , )
) After the trail ( ,  was removed):

 = \ ,  
   

 =   

   ' ( , ) =  
             = \ ,

E E E E E E
a

S E E E E
b E E e E

E E e e E
E E

S E E E E
E E e

∀ → ∩ ≠ ∅

= ∪
→ ∈

 ∈


⇒ ∪

∪

 

1 1

1
' '
1 2 1 2

 
             = \

Therefore, ' ( , ) ( , )

e E
S e
S E E S E E











 ∈


 ≠

 (16) 

 
     

     It is noteworthy that the term of the variant 
sample space  'S S≠  as given in Theorem 1 refers to 
the dynamic distributions of probabilities for 
individual events in a series of experiments due to 
the impact of previous ones. Many problems and 
exceptions of classic probability theory stem from 
the overlooking of the fact of variant sample spaces 
as stated in Theorem 1. 
   
3.3 Mathematical Model of the General 
Probability Theory 
 
The extended probability is a mathematical structure 
built on the basis of set theory and the universe of 
discourse of probability as described in proceeding 
subsections.     
 
     Definition 10. The probability of an event e E∈  
in a sample space S in U, denoted by ( | )P e e E S∈ ⊆ , 
is a ratio between the size of the set of the expected 
events | |E  and that of the sample space | |S :       
  
 

| |( | )
| |
EP e e E S
S

∈ ⊆ ⊂E 

                  (17) 
 
 

 

     Example 6. On the basis of the sample space 
1 { 0.68,  0.32}S H T    as given in Example 2, the 

probabilities of individual events ( ) and ( )P H P T  of the 
unfair coin can be determined, respectively, 
according to Definition 10 as follows:  
 
 
 

 
     Example 7. Reuse the sample space 

  

5 10

2
1 6

{ 0.09, 0.11}
i i

S W BR R
 

    as modeled in Example 

3, the probabilities of individual events ( ) and ( )P B P W  
of the uneven balls drawing from the bag can be 
determined, respectively, according to Definition 10 
as follows:  

 
 
 
 
 
 

      
     Corollary 2. The probability of the entire sample 
space S, P(S), is always constrained by the unit size, 
i.e.: 
 

 

| |

1

| |
( ) ( | ) 1

| |

S

S i i
i

S
P S P e e S

S

             (18) 

 
     According to the formal models of events and 
sample spaces, the nature of probability is 
constrained by different contexts determined by the 
three factors in the Cartesian product, S R D× × , as 
described in Table 1 where S denotes the sample 
space (variant/invariant), R  relation of sets of events 
(joint/disjoint), and D  dependency of events 
(dependent/independent/mutually-exclusive (ME)). 
Therefore, the contexts of general probability are 
classified into four categories according to the 
control factors in the Cartesian product, i.e.: i) 
invariant sample space and disjoint/ME-dependent 
events, ii) invariant sample space and 
joint/independent events, iii) variant sample space 
and disjoint/independent events, and iv) invariant 
sample space and joint/dependent events. 
 

Table 1. Contexts of Relations and Dependencies of 
Events in the General Probability Theory 

 
No, 

 

 
Category Definition 

( )S R D× ×  
Sample 
space 

(S) 

Events 
Relation (R) Dependency (D) 

i Disjoint/mutually-exclusive 
(ME) events in invariant 
sample space  

S R D× ×               'S S=  X Y = ∅∩  ( ), MEX Y→ =∅
 

ii Joint/independent events in 
invariant sample space 

S R D× ×  X Y ≠ ∅∩  X →Y  

iii Disjoint/independent events 
in variant sample space 

'S R D× ×   'S S≠  X Y = ∅∩  X →Y  

iv Joint/dependent events in 
variant sample space 

'S R D× ×  X Y ≠ ∅∩  ( ')X Y Y→ =  

       

     It will be demonstrate and proven in Section 5 
that any complex probability can be expressed by an 
algebraic operation on the primitive single variable 
probabilities in the theory of general probability. 
 

1
1

1
1

| | 0.68( | ) 0.68
| | 0.68 0.32

| | 0.32( | ) 0.32
| | 1

H
H

T
T

EP H H E S
S

EP T T E S
S

∈ ⊂ = = =
+

∈ ⊂ = = =

2
2

2
2

| | 0.11 5( | ) 0.55
| | 1
| | 0.09 5( | ) 0.45
| | 1

B
B

W
W

EP B B E S
S
EP W W E S
S

•
∈ ⊆ = = =

•
∈ ⊆ = = =
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4. The Framework of the General 
    Probability Theory and  
    Probability Algebra  
 
On the basis of the mathematical models of general 
probability and its discourse as defined in preceding 
sections, the framework of revisited probability 
theory can be established by a set of algebraic 
operators on formal probabilities as summarized in 
Table 2. It is noteworthy that traditional probability 
theory only covers a special case of the general 
probability in the invariant sample space with 
mainly joint and independent events. 
    
     Each operator of probability algebra in Table 2 
will be formally described in the general form as an 
algebraic expression based on Definition 10. Then, 
special cases of any probability operation will be 
analyzed according to its properties in the three-
dimensional structure constrained by ( )S R D× ×  as 
classified in Table 1. Therefore, the four 
combinations in ( )S R D× ×  form the general 
contexts of the revisited probability theory. This 
approach reveals a number of fundamental 
properties of both the general and classic 
probabilities and their manipulations, which will be 
formally described in Section 5. A set of basic 

properties of general probability in the universe of 
discourse U are summarized in Table 3. Properties 1 
and 2 in Table 3 describe the characteristics of 
probabilities in both singularities of the entire and 
empty sample spaces, respectively, where E U  
denotes that E is a component (dimension) of the 
hyperstructure U. It is noteworthy as specified in 
Property 4 and proven in Corollary 2 that the 
probability of the sample space 

( ) 1,  P S e E S≡ ∈ ⊆ ⊂E , in any given problem 
layout.  
 
     The mathematical model of probability, the 
framework of the revisited probability theory, and 
the formal operators of probability algebra enable 
rigorous analyses of the nature, properties, and rules 
of probabilities as well as their algebraic operations. 
The basic properties of probabilities provide a set of 
axioms for the general probability theory. On the 
basis of the structural properties of general 
probability, a comprehensive set of operations and 
rules of probability algebra will be derived in 
Section 5. This leads to the explanation that classic 
probability theory is a special case and compatible 
subsystem of the revisited probability theory in 
terms of both mathematical models and probability 
operators. 

 
 

 
Table 2. The Framework of Contexts and Operators of Probability Algebra 

 

No. Operator Definition 
General 

 
( ')a A S b B S∈ ⊂ ∧ ∈ ⊂  

Invariant sample space (Classic) 
( ' )S S=  

Variant sample space (Revisited)  
( ' )S S≠  

Disjoint / 
ME dependent  

Events 
 

( )A B A B= ∅ ∧ → =∅∩    

Joint / 
independent  

events  
A B A B≠ ∅ ∧ →∩  

Disjoint / 
independent  

events 
A B A B= ∅ ∧ →∩    

Joint / 
dependent  

events  
A B A B≠ ∅ ∧ →∩  

1 Condition ( | ) ( )P b a P A B→

  0 ( )P b      ( )'( ) ,
1 ( )

( )         ( )
| |

i

i

P bP b
P a

P aP a
A

=
−

=

 ( ) ( )''( ) ,
1 ( )

( )         ( )
| |

i

i

i

P b P bP b
P b
P bP b

B

−
=

−

=

 

2 Multiplication 
 

( ) ( ) ( ) ( | )P a b P A B P a P b a× = ∧ =   0 ( ) ( )P a P b  ( ) '( )P a P b  ( ) ''( )P a P b  

3 Division 
 

 
 

| | ( )( / ) ( ) ,  0 ( ) ( )
| | ( )
B P bP b a P P a P b
A P a

= = < ≥
  0      ( )

( )
P b
P a

      '( )
( )

P b
P a

 ''( )
( )

P b
P a

 

4 Addition 
 

 
( ) ( )

      ( ) ( ) ( ) ( | )
P a b P A B

P a P b P a P b a
+ = ∨
= + −

 ( ) ( )P a P b+  ( ) ( )
        ( ) ( )
P a P b

P a P b
+ −  ( ) ( )

        ( ) '( )
P a P b

P a P b
+ −  ( ) ( )

        ( ) ''( )
P a P b

P a P b
+ −  

5 Subtraction 
 

( ) ( \ ) ( ) ( ) ( | )P a b P A B P a P a P b a− = = −  ( )P a  

  

( ) ( ) ( )

      ( ) ( )

P a P a P b

P a P b

−

=

 
  

( ) ( ) '( )

      ( ) '( )

P a P a P b

P a P b

−

=

 
  

( ) ( ) ''( )

      ( ) ''( )

P a P a P b

P a P b

−

=

 

6 Complement ( ) 1 ( )P a P a= −  
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Table 3. Axiomatic Properties of Probability Algebra 
 

No. Property Condition 
1 ( ) 1P ≡E  E U  

2 ( ) 0P ∅ =  ∅⊂ E U  

3 0 ( ) 1P E≤ ≤  E S⊆ ⊂E  
4 | |

1

( ) 1
S

i
i

P e
=

=∑
 

( ) 1ie E S P S∈ ⊆ ⊂ ∧ ≡E  

5 ( ) ( )P A P B≤  A B S⊆ ⊂  
6 ( ) 1 ( )P a P a= −  ( ) ( ) 1,  P e P e e E S+ ≡ ∈ ⊆ ⊂E  

 
 

5. Formal Operators of  
    Probability Algebra 
 

The theoretical framework of general probability 
and the mathematical structure of probability 
algebra are formally presented in Sections 3 and 4. 
On the basis of the unified mathematical model of 
the conditional probability, a set of six probability 
operators is identified as those of conditional, 
multiplication, division, addition, subtraction, and 
complement operations in probability algebra. Each 
probability operator is formally defined and 
elaborated in the following subsections towards an 
algebraic framework of the theory of general 
probability. 
 
     Because the universe of discourse of general 
probability is constrained by three control factors in 
the Cartesian product S R D× ×  as defined in Table 
1, the contexts of probability algebra can be 
classified into four categories known as: i) Invariant 
sample space and disjoint/ME-dependent events 
S R D× × ; ii) Invariant sample space and 
joint/independent events S R D× × ; iii) Variant 
sample space and disjoint/independent events 

'S R D× × ; and iv) Invariant sample space and 
joint/dependent events 'S R D× × .  
 
5.1 The Conditional Operator on 
Consecutive Probabilities 
 
The conditional operation of consecutive 
probabilities deals with coupled influences between 
related events in both invariant and variant sample 
spaces. Because conditional probability forms the 
foundation for all other operators in the algebraic 
system of the general probability theory, it must be 
rigorously analyzed in order to avoid the dilemma of 
the cyclic definition as in classic probability theory.  
 

    Theorem 2. The conditional operator on 
consecutive probabilities of an event b influenced 
by that of a preceding event a in the sample space S 
in U, ( | )P b a , is determined by a ratio between the 
changed sizes of sets of succeeding  events B’ in the 
variant sample space S’ given 

, and 'a A S b B S∈ ⊂ ∈ ⊂ , i.e.: 
 
 
 
  

 

( | ) ( )

)   Invariant , unrelated , and ME-dependent :  
     0

)  Invariant , related ,  and independent :  
     ( )

) Variant ', unrelated , and independent :  '

     

P b a P A B

i S R D S R D

ii S R D S R D
P b

ii S R D S R D

→

× ×

× ×

× ×=



 

( ) ( )'( ) ,  ( )
1 ( ) | |

) Variant ', related  and dependent :  '
( ) ( ) ( )     "( ) ,  ( )
1 ( ) | |

i
i

i
i

i

P b P aP b P a
P a A

iv S R D S R D
P b P b P bP b P b

P b B









 = = −

× ×
 − = =

−
                                          (19) 

 
 
 
 
 

     Proof. Theorem 2 can be proven in each of the 
four contexts as defined in Table 1 according to 
Definition 10 as follows:     
 

 

 

  

, , , and b ',
| ' |  ( | ) ( ) ,

| \ |
)   ' ( , ME),

| |     0
| |

)  '

a b a A S B S
BP b a P A B a A b B

S a
i S S A B A B

S
ii S S A B A

∀ ∈ ⊂ ∈ ⊂

= → = ∈ ∧ ∈

∀ = ∧ ∩ = ∅ ∧ → = ∅
∅

=

∀ = ∧ ∩ ≠ ∅ ∧ →

=

,
| |     ( )
| |

) '

B
B P b
S

iii S S A B A

=

∀ ≠ ∧ ∩ = ∅ ∧ → ,
| | ( ) ( )     = '( ),  ( )

| | 1 1 ( ) | |
) ',

( ) ( )| | 1 ( )     ''( ),  ( )
| | 1 1 ( ) | |

i
i

i
i

i

B
B P b P aP b P a

S P a A
iv S S A B A B

P b P bB P bP b P b
S P b B














= =
− −

 ∀ ≠ ∧ ∩ ≠ ∅ ∧ →


−− = = = − −

   (20) 

 
  
 
 

     It is noteworthy in Theorem 2 that S is variant in 
general as constrained by Theorem 1 because of the 
coupling of the conditional events a and b. In other 
words, the classic probability in an invariant sample 
space is only a special case of that of the general 
variant context.   
 

     Example 8. In the invariant sample space 
 1 { 0.68, 0.32}S H T    as modeled in Example 2, 
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the events head (H) and tail (T) are mutually 
exclusive in a single toss of the coin. That is, both 
events cannot happen simultaneously. Once a head 
is observed, tail will certainly not appear in the same 
trail, and vice versa. This is a typical context of 
mutually exclusive ( H T = ∅∩  or disjoint), and 
dependent ( |  or |T H H T= ∅ = ∅ ) events of 
conditional probability according to Theorem 2(i) 
where  ( | ) 0,   and ( )P T H if H T H T= = ∅ → =∅∩ . 
     Theorem 2(i) indicates that a pair of mutually 
exclusive events  and X Y  are dependent because

( ) ( | ) 0X Y X Y P Y X= ∅ ∧ → =∅ ⇒ =∩  under the 
interactive influence between the ME events. 
       

     Example 9. Given a bag containing five black 
balls (B) and five white balls (W) in 

  

5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
 

      as 

modeled in Example 3. Assume the ball drawn from 
the bag will be returned to the bag before the next 
trial, i.e., '

2 2S S= , it is a case of invariant sample 
space, related and independent events of conditional 
probability according to Theorem 2(ii) as follows: 
 

( | ) ( ) 0.45
( | ) ( ) 0.55
( | ) ( ) 0.45
( | ) ( ) 0.55

P W B P W
P B W P B
P W W P W
P B B P B

= =
= =
= =
= =

 

 

     Example 10. Reconsider Example 9 in 

  

5 10
'
2

1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
 

     where 

the ball drawn from the bag will not be returned, i.e., 
'
2 2S S≠ , it becomes a case of variant sample space, 

disjoint/independent or joint/dependent events of 
conditional probability according to Theorem 2(iii) 
or 2(iv), respectively, as follows:  
 

( ) ( )
( | ) '( ) ,  ( ) 0.55 / 5 0.11

1 ( ) | |

0.45 0.45
            0.51

1 0.11 0.89
( ) ( )

( | ) '( ) ,  ( ) 0.45 / 5 0.09
1 ( ) | |

0.55 0.55
           0.60

1 0.09 0.91
( ) ( )

( | ) ''( )
1

P W P B
P W B P W P b

iP b B
i

P B P W
P B W P B P w

iP w W
i

P B P b
iP B B P B

    


  


    


  



  ,  ( ) 0.11

( )

0.55 0.11 0.44
           0.49

1 0.11 0.89
( ) ( )

( | ) ''( ) ,  ( ) 0.09
1 ( )

0.45 0.09 0.36
            0.40

1 0.09 0.91

P b
iP b

i

P W P w
iP W W P W P w

iP w
i





  




  



  


 

     Contrasting the results obtained in Examples 9 
and 10, it is noteworthy that the conditional 
probabilities in Contexts (iii) and (iv) according to 
Theorem 2 have increased or decreased, 
respectively, due to the size shrinkages of sample 
spaces and/or the number of events as a result of the 
conditional coupling. The changes between the 
variant ( '

2S ) and invariant ( 2S ) sample spaces can be 
rigorously analyzed as follows: 
 
 

'( | ) ( | ) 0.51 0.45 0.06

'( | ) ( | ) 0.49 0.55 0.06

'( | ) ( | ) 0.60 0.55 0.05

'( | ) ( | ) 0.40 0.45 0.05

P W B P W B

P B B P B B

P B W P B W

P W W P W W

         
         

 

 

The results indicate that conditional probabilities in 
the variant and invariant sample spaces may be 
significantly different due to the increment or 
decrement of coupled event influences. 
 
5.2 The Complement Operator in the 
Context of Probability Space 
 
     Theorem 3. The complement of probability of an 
event a A S∈ ⊂  in U, ( )P a , is determined by the 
probability of all events in S excluding only that of 
a, i.e.: 
 

( ) 1 ( )P a P a−

                        (21) 
 
 

     Proof. Theorem 3 can be proven according to 
Definition 10 as follows:   

 and ,

( ) ( | )

| | | \ | | | | |       
| | | | | | | |

       1 ( )

a A S a A S

P a P A a A S a A S

A S A S A
S S S S

P a

∀ ∈ ⊂ ∈ ⊂

= ∈ ⊂ ∧ ∈ ⊂

= = = −

= −

          (22) 

 
 

     Example 11. On the basis of Example 4, the 
complement of probability in the sample space 

   
2
1 { 0.46, 0.22, 0.22, 0.10}S HH HT TH TT      can be 

determined according to Theorem 3 as follows: 
 
 

( ) 1 ( ) 1 0.46 0.54

( ) 1 ( ) 1 0.22 0.78

P HH P HH

P TH P TH

= − = − =

= − = − =
 

 
 
 

     Corollary 3. A double complement of the 
general probability of an event a A S∈ ⊂  in U, ( )P a , 
results in an involution to the same probability, i.e.: 
 
 
 

( ) 1 ( ) 1 (1 ( )) ( )P a P a P a P a= − = − − =           (23) 
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5.3 The Multiplication Operator on 
Disjunctive Probabilities 
 

      Theorem 4. The multiplication of probabilities 
of disjunctive events a and b in the sample space S 
in U, ( )P a b× , is determined by the product of the 
probabilities of ( )  and  ( | )P a P b a  given 

 and 'a A S b B S∈ ⊂ ∈ ⊂ , i.e.:  
 
 

 

( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME-dependent :  
      0

)   Invariant , related ,  and independent :  
      ( ) ( )

) Variant ', unrelated , and indepen

P a b P A B P a P b a

i S R D S R D

ii S R D S R D
P a P b

iii S R

× ∧ =

× ×

× ×

=



  

dent :  '
( ) ( )      ( ) '( ) ( ) ,   ( )

1 ( ) | |
) Variant ', related  and dependent :  '

( ) ( ) ( )     ( ) ''( ) ( ) ,   ( )
1 ( ) | |

i
i

i
i

i

D S R D
P b P aP a P b P a P a

P a A
iv S R D S R D

P b P b P bP a P b P a P b
P b B







 × ×
 = = −

× ×
 − = =

−
                                     (24) 

 

     Proof. Theorem 4 can be proven according to 
Theorem 2 and Definition 10 as follows:     
 

 

 

, , , and b ',
| \ || | | |  ( ) ( ) ,

| | | | | \ |
               ( ) ( | )

i
i

i

a b a A S B S
B aA B AP a b P A B a A

S S S a
P a P b a

∀ ∈ ⊂ ∈ ⊂
∩

× = ∧ = = • ∈

=

 

)    ' ( , ME),
       0

)   '

i S S A B A B

ii S S A B A

∀ = ∧ ∩ = ∅ ∧ → = ∅

∀ = ∧ ∩ ≠ ∅ ∧ →

=

    

,
    ( ) ( )

) '

B
P a P b

iii S S A B A∀ ≠ ∧ ∩ = ∅ ∧ → ,
( ) ( )      ( ) ( ) '( ),   ( )

1 ( ) | |
) ',

( ) ( ) ( )     ( ) ( ) ''( ),  ( )
1 ( ) | |

i
i

i
i

i

B
P b P aP a P a P b P a

P a A
iv S S A B A B

P b P b P bP a P a P b P b
P b B









 = = −


∀ ≠ ∧ ∩ ≠ ∅ ∧ →
 − = =

−

   (25) 

 
 

 

     Example 12. Given an invariant sample space 
 1 { 0.68, 0.32}S H T    as modeled in Example 2, 

i.e., '
1 1S S= , the following disjunctive probabilities 

for two consecutive tosses of the uneven coin can be 
derived by probability multiplication according to 
Theorem 4(ii): 
 
 

( ) ( ) ( ) 0.68 0.32 0.22
( ) ( ) ( ) 0.68 0.68 0.46
( ) ( ) ( ) 0.32 0.68 0.22
( ) ( ) ( ) 0.32 0.32 0.10

P H T P H P T
P H H P H P H
P T H P T P H
P T T P T P T

× = = • =
× = = • =
× = = • =
× = = • =

         

     Example 13. Given a variant sample space 
5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
 

      as 

modeled in Example 3, i.e., '
2 2S S≠ , the following  

probability multiplications for two consecutive 
draws of the uneven balls in the bag can be obtained 
according to Theorem 4(iii) or 4(iv), respectively: 
 

 

 

( ) ( )
( ) ( ) '( ) , ( ) 0.09

1 ( )
0.68 0.32 0.22

            0.24
1 0.09 0.91

( ) ( )
( ) ( ) '( ) , ( ) 0.11

1 ( )
0.32 0.68 0.22

            0.25
1 0.11 0.89

( )
( ) ( ) ''( ) ( )

i
i

i
i

P B P W
P B W P B P W P w

P w

P W P B
P W B P W P B P b

P b

P B P
P B B P B P B P B

   



  



   



  




    

 

( )
, ( ) 0.11

1 ( )
0.68(0.68 0.11) 0.39

            0.44
1 0.11 0.89

( ) ( )
( ) ( ) ''( ) ( ) , ( ) 0.09

1 ( )
0.32(0.32 0.09) 0.07

             0.08
1 0.09 0.91

i
i

i

i
i

b
P b

P b

P W P w
P W W P W P W P W P w

P bw





  




   



  


 

     Corollary 4. The revisited Bayes’ law of 
probability can be rigorously derived based on 
Theorem 4 as follows: 
 

, , ,  ',  and ' ,

  ( ) ( ) ( | ),  

a b a A S b B S S S

P a b P a P b a A B A

∀ ∈ ⊂ ∈ ⊂ =

× = ≠ ∅ ∧ →∩
               ( ) ( )
               ( ) ( | )
               ( )

( | ) ( | ) ,   '
( ) ( )

 

B
P a P b
P b P a b
P b a

P b a P a b iff S S A B A
P b P a

=
=
= ×

= = ∧ ≠ ∅ ∧ →
⇒

∩ B B∧ →

( | ) ( | ) ,  Otherwise
( ) ( )

A

P b a P a b
P b P a




 ≠


                                                (26) 
 

     Corollary 4 and Theorem 4 indicate that Bayes’ 
law in classic probability theory is a special case of 
general  probability multiplication, which may only 
hold iff ' |S S A B A BB= ∧ ≠ ∅ ∧ =∩ , i.e., when the 
conditions for invariant sample space and related but 
independent events are satisfied.        
 
 
5.4 The Division Operator on Composite 
Probabilities 
 
The algebraic operation of probability division is an 
inverse operation of probability multiplication, 
which was not defined in traditional probability 
theory.     
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     Theorem 5. The division of probability of an 
event b by that of another event a in the sample 
space S in U, ( / )P b a , is determined by the ratio of 
their probabilities where  and 'a A S b B S∈ ⊂ ∈ ⊂  i.e.: 
 

  

     

 

| | ( )( / ) ( ) ,  0 ( ) ( )
| | ( )

)    Invariant , unrelated , and ME dependent :  
    0

)   Invariant , related ,  and independent :  
( )     
( )

) Variant ', unrelate

B P bP b a P P a P b
A P a

i S R D S R D

ii S R D S R D
P b
P a

iii S

= < ≥

× ×

× ×

=



 

d , and independent :  '
'( )     
( )

) Variant ', related  and dependent :  '
''( )    
( )

R D S R D
P b
P a

iv S R D S R D
P b
P a









 × ×





× ×




                                         (27) 
 

 

     Proof. Theorem 5 can be proven according to 
Theorems 2 and 4 as well as Definition 10 as 
follows:     
 

   

   

       

, , ,  and ',
| |  ( / ) (| | / | |)
| |

| | / | |              ,  0 | | | |
| | / | |

( )              ,  0 ( ) ( )
( )

)   ' ( , ME),
| | / | | ( ) 0    
| | / | | ( ) ( )

a b a A S b B S
BP b a P B A
A

B S A B
A S

P b P a P b
P a

i S S A B A B
B S P b
A S P a P a

∀ ∈ ⊂ ∈ ⊂

= =

= < ≥

= < ≥

∀ = ∧ ∩ = ∅ ∧ → = ∅

= =

=

0,  ( )

)  '

A B

ii S S A B A

= → = ∅

∀ = ∧ ∩ ≠ ∅ ∧ → ,
| | / | | ( )     
| | / | | ( )

) '

B
B S P b
A S P a

iii S S A B A

=

∀ ≠ ∧ ∩ = ∅ ∧ → ,
| | / | ' | '( ) 1 ( )     ,  
| | / | | ( ) ( ) 1 ( )

) ' ',
( ) ( )| ' | / | ' | "( ) 1     ,  

| | / | | ( ) ( ) 1 ( )

i
i

i
i

i

B
B S P b P b a A
A S P a P a P a

iv S S A B A B
P b P bB S P b b B

A S P a P a P b














= = ∈
−

 ∀ ≠ ∧ ∩ ≠ ∅ ∧ →


− = = ∈ −
 (28) 

 
 

     Example 14. In the invariant sample space 
1 { 0.68,  0.32}S H T    as modeled in Example 2, the 

events head (H) and tail (T) are mutually exclusive 
in a single toss of the unfair coin. Therefore, the 
following probability divisions of unrelated events 
can be obtained according to Theorem 5(i), 
respectively: 
 
 

 

( / ) 0
( / ) 0

P H T
P T H

=
=

 

 
 

     Example 15. Redo Example 14 with none-
mutually-exclusive events in 

1 { 0.68,  0.32}S H T   , 
the following  probability divisions between those of 
two consecutive tosses and the first toss can be 
obtained according to Theorem 5(ii), respectively, as 
follows: 
 

( ) 0.22( / ) 0.32
( ) 0.68

( ) 0.22( / ) 0.69
( ) 0.32
( ) 0.46( / ) 0.68
( ) 0.68

( ) 0.10( / ) 0.31
( ) 0.32

P HTP HT H
P H

P THP TH T
P T
P HHP HH H
P H

P TTP TT T
P T

= = =

= = =

= = =

= = =

 

 
 

     It is noteworthy that, according to Theorem 5(ii), 
the event of the divisor must not be mutually 
exclusive to that of the dividend. Otherwise, 
Theorem 5(i) should be applied such as in the cases 
of   ( / ) 0, ( / ) 0, ( / ) 0,P HH T P TT H P HT T= = =  and 

( / ) 0P TH H =  in the given context.  
 
     Example 16. Given a variant sample space 

   
2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW      as 

modeled in Example 5, i.e., 2 ' 2
2 2S S≠ , the following  

probability divisions between two draws of the 
uneven balls in the bag can be obtained according to 
Theorem 5(iii) or 5(iv), respectively: 
 
 
 

'( ) 0.28
( / ) 0.51

( ) 0.55
'( ) 0.27

( / ) 0.60
( ) 0.45

"( ) 0.27
( / ) 0.49

( ) 0.55
"( ) 0.18

( / ) 0.40
( ) 0.45

P BW
P BW B

P B
P WB

P WB W
P W

P BB
P BB B

P B
P WW

P WW W
P W

  

  

  

  

 

 
 
 
 

     The results obtained in Example 16 can be 
verified by applying the multiplication rules given 
in Eq. 24(iii) and 24(iv) as shown in the following 
example. This approach is particularly useful when 
the product probability is unknown.        
 
     Example 17. Redo Example 16 in 

2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW    

 according to Eq. 24(iii) and 24(iv) obtaining the 
same results as follows: 
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( ) 0.45 0.45
( / ) '( ) 0.51

1 ( ) 1 0.11 0.89
( ) 0.55 0.55

( / ) '( ) 0.60
1 ( ) 1 0.09 0.91
( ) ( ) 0.55 0.11 0.44

( / ) "( ) 0.49
1 ( ) 1 0.11 0.89

( ) ( ) 0.45 0.
( / ) "( )

1 ( )

i

i

i

i

i

i

P W
P BW B P W

P b
P B

P WB W P B
P w

P B P w
P BB B P B

P b
P W P w

P WW W P W
P w

    
 

    
 

 
    

 
 

  


09 0.36
0.40

1 0.09 0.91
 



 
     In probability theory, it is often interested in 
predicating the odds of random outcomes about the 
ratio of the probabilities of an event’s success and 
failure.  
 
     Definition 11. An odd, ( )eΘ , is a ratio between 
probabilities of an event e and its complement, or 
that of its success 

es  and failure 
ef , i.e.: 

 
 
 

    
, , ,

( )( ) ( )  ( )
1 ( ) ( )( )

e e

e

e

e s f E S
P sP e P ee

P e P fP e

∀ ∈ ⊆

Θ = =
−



             (29) 

 
 
 

     It is noteworthy that the range of odds is a 
nonnegative real number, i.e., ( ) 0eΘ ≥ , which may 
be great than 1.0 according to Definition 11. 
 

 

5.5 The Addition Operator on Conjunctive 
Probabilities 
 

     Theorem 6. The addition of probabilities of two 
conjunctive events a or b in the sample space S in U, 

( )P a b+ , is determined by the sum of the 
probabilities of ( ) and ( )P a P b  excluding that of the 
intersection ( )P a b×  given  and 'a A S b B S∈ ⊂ ∈ ⊂ , i.e.: 
 
 

 

( ) ( ) ( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME-dependent :  
      ( ) ( )

)   Invariant , related ,  and independent :  
      ( ) ( ) ( ) ( )

) Variant 

P a b P A B P a P b P a P b a

i S R D S R D
P a P b

ii S R D S R D
P a P b P a P b

iii

+ = ∨ = + −

× ×
+

× ×
+ −

=

  

', unrelated , and independent :  '
      ( ) ( ) ( ) '( )

) Variant ', related  and dependent :  '
      ( ) ( ) ( ) ''( )

S R D S R D
P a P b P a P b

iv S R D S R D
P a P b P a P b









× ×
 + −

× ×
 + −

                                      (30) 
    

 

     Proof. Theorem 6 can be proven according to 
Theorem 2 and Definition 10 as follows: 
     

 

 
 

 

, , , and b ',
| |  ( ) ( )

| |
| | | | | |               
| | | | | |

               ( ) ( ) ( ) ( | )
)   ' ( , ME),

      ( ) ( )

)  '

a b a A S B S
A BP a b P A B

S
A B A B
S S S

P a P b P a P b a
i S S A B A B

P a P b

ii S S A B A

∀ ∈ ⊂ ∈ ⊂
∪

+ = ∨ =

∩
= + −

= + −

∀ = ∧ ∩ = ∅ ∧ → = ∅
+

∀ = ∧ ∩ ≠ ∅ ∧ →

=

,
      ( ) ( ) ( ) ( )

) '

B
P a P b P a P b

iii S S A B A

+ −

∀ ≠ ∧ ∩ = ∅ ∧ →

           

          

,
( ) ( ) ( )      ( ) ( ) ,  ( )

1 ( ) | |
( ) ( ) ( ) '( )

) ',
( ) ( ) ( )      ( ) ( ) ( ) ,  ( )
1 ( ) | |

( ) ( ) ( ) ''( )

i
i

i
i

i

B
P a P b P aP a P b P a

P a A
P a P b P a P b

iv S S A B A B
P b P b P bP a P b P a P b

P b B
P a P b P a P b











+ − =
−

 = + −


∀ ≠ ∧ ∩ ≠ ∅ ∧ →
 − + − =

−
= + −



  (31) 

 
 

     Example 18. Reuse the individual probabilities 
obtained in Example 2 in the invariant sample space 

1 { 0.68, 0.32}S H T   . The following additions of 
conjunctive probabilities for expecting some mixed 
head and tail of an unfair coin in two tosses can be 
derived according to Theorem 6(i): 
 
 

( ) ( ) ( ) ( ) ( )
                    0.24 0.24 0 0.48

( ) ( ) ( ) ( ) ( )
                    0.36 0.16 0 0.52

P HT TH P HT P TH P HT P TH

P HH TT P HH P TT P HH P TT

+ = + −
= + − =

+ = + −
= + − =

 

 
     Example 19. Suppose a system encompasses two 
components C1 and C2 with estimated failure rates 
as F1 = 0.7 and F2 = 0.3, respectively, in an invariant 
sample space. The conjunctive probabilities for a 
system failure of either C1 or C2 can be determined 
according to Theorem 6(ii) as follows: 
 

 
 
 
 

      
 
 
     Example 20. Consider the variant sample space 

2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW     as 

modeled in Example 5 where no ball will be 
returned into the bag after a draw. The following 
probability additions between two conjunctive 
draws of the uneven balls in the bag can be obtained 
according to Theorem 6(iii) or 6(iv), respectively: 
 
 
 

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )
                0.7 0.3 0.7 0.3
                1.0 0.21 0.79

P F F P F P F P F P F+ = + −
= + − •
= − =
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( ) ( )
( ) ( ) ( )

1 ( )
0.55 0.45 0.25

              0.55 0.45 1 0.72
1 0.11 0.89
( ) ( )

( ) ( ) ( )
1 ( )

0.45 0.55 0.25
              1 1 0.73

1 0.09 0.91
( )( ( ) ( )

( ) ( ) ( )

i

i

i

P B P W
P B W P B P W

P w

P W P B
P W B P W P B

P w

P B P B P b
P B B P B P B

   



     


   



    




   
)

1 ( )
0.55(0.55 0.11) 0.24

             1.1 1.1 0.83
1 0.11 0.89

( )( ( ) ( ))
( ) ( ) ( )

1 ( )
0.45(0.45 0.09) 0.16

               0.9 0.9 0.72
1 0.09 0.91

i

i

i

P b

P W P W P w
P W W P W P W

P w




    



   




    


 

 
 
5.6 The Subtraction Operator on 
Decompositive Probabilities 
 
 
The algebraic operation of probability subtraction is 
an inverse operation of probability addition, which 
was not defined in traditional probability theory.     
 
 
 
 

     Theorem 7. The subtraction of related 
probability of an event b from that of a in the 
sample spaces S in U, ( )P a b− , is determined by 
the probability of event a excluding that of b given 

 and 'a A S b B S∈ ⊂ ∈ ⊂ , i.e.: 
 
 
 
 

 

( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME dependent :  
      ( )

)   Invariant , related ,  and independent :  

      ( ) ( ) ( ) ( ) ( )

) Variant ', unrelated

P a b P a P a P b a

i S R D S R D
P a

ii S R D S R D

P a P a P b P a P b

iii S

− −

× ×

× ×

− =
=



   

 , and independent :  '

      ( ) ( ) '( ) ( ) '( )
) Variant ', related  and dependent :  '

      ( ) ( ) ''( ) ( ) ''( )

R D S R D

P a P a P b P a P b
iv S R D S R D

P a P a P b P a P b









× ×
 − =
 × ×


− =
where ( ) 1 ( )P b P b= − .                                           (32) 
 
     Proof. Theorem 7 can be proven according to 
Theorem 2 and Definition 10 as follows: 
 

  , , , and ',
| \ |  ( ) ( \ )

| |
| | | |               
| | | |

               ( ) ( | )

a b a A S b B S
A BP a b P A B

S
A A B
S S

P a P b a

∀ ∈ ⊂ ∈ ⊂

− = =

∩
= −

= −

 

 

     

 

)   ' ( , ME),
    ( )

)  '

i S S A B A B
P a

ii S S A B A

∀ = ∧ ∩ = ∅ ∧ → = ∅

∀ = ∧ ∩ ≠ ∅ ∧ →

=

,

      ( ) ( ) ( ) ( )(1 ( )) ( ) ( )

) '

B

P a P a P b P a P b P a P b

iii S S A B A

− = − =

∀ ≠ ∧ ∩ = ∅ ∧ → ,
( ) ( )      ( ) ,  

1 ( )
( ) ( )             ( )(1 ) ( )(1 '( ))

1 ( )

             ( ) '( )
)  ' ,

( ) ( )       ( ) ( ) ,  
1 ( )

( ) ( )              ( )(1

i
i

i

i
i

i

i

B
P a P bP a a A

P a
P a P bP a P a P b

P a

P a P b
iv S S A B A B

P b P bP a P a b B
P b

P b P bP a

− ∈
−

= − = −
−

=
∀ ≠ ∧ ∩ ≠ ∅ ∧ →

−
− ∈

−
−

= − ) ( )(1 ''( ))
1 ( )

              ( ) ''( )
i

P a P b
P b

P a P b






















 = −

−


=



  (33) 

 

     Example 21. Given the invariant sample space 
1 { 0.68, 0.32}S H T    as modeled in Example 2, the 

following probability subtraction operations on the 
unfair coin can be derived according to Theorem 
7(i) and 7(ii), respectively: 
 
 
 

1 1 1

1 1 1

( ) ( ) ( ) 0.68 0 0.68    // 
( ) ( ) ( ) 0.32 0 0.32     // 

( ) ( ) ( ) 1 (1 0.68) 0.32  // 

( ) ( ) ( ) 1 (1 0.32) 0.68    // 
( ) ( ) 0
( ) ( ) 0

P H T P H P HT ME
P T H P T P TH ME

P S H P S P H H S

P S T P S P T T S
P H H P
P T T P

− = − = − =
− = − = − =

− = = • − = ⊂

− = = • − = ⊂
− = ∅ =
− = ∅ =

 

 

     Example 22. Consider the variant sample spaces 
5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
 

      

and 2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW     , 

respectively, as modeled in Examples 3 and 5. The 
following probability subtraction operations on the 
uneven balls in the bag can be solved according to 
Theorem 7(iii), respectively: 
 

( )
( ) ( ) '( ) ( )(1 )

1 ( )

0.45
             0.55(1 ) 0.55 • 0.49 0.27

1 0.11
( )

( ) ( ) '( ) ( )(1 )
1 ( )

0.55
             0.45(1 ) 0.45 • 0.40 0.18

1 0.09
( )

( ) ( ) "( ) ( )(1
1

P W
P B W P B P W P B

P b
i

P B
P W B P W P B P W

P w
i

P W
P BB W P BB P W P BB

P

   


   


   


   


   


)
( )

0.45
               0.27(1 ) 0.27 • 0.49 0.13

1 0.11
( )

( ) ( ) "( ) ( )(1 )
1 ( )

0.55
                0.18(1 ) 0.18 • 0.40 0.07

1 0.09

b
i

P B
P WW B P WW P B P WW

P w
i

   


   


   

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     Example 23. Given the same layout as that of 
Example 22 in a variant sample space with both 
related and dependent events, the following 
probability subtraction operations on the uneven 
balls in the bag can be solved according to Theorem 
7(iv), respectively: 
 
 

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.55 0.11

                0.28(1 ) 0.28 0.51 0.14
1 0.11

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.45 0.09

                 0.27(1 ) 0.27 0.60 0.1
1 0.09

i

i

i

i

P B P b
P BW B P BW P B P BW

P b

P W P w
P WB W P WB P W P WB

P w


   




    



   




    


6

 

 
 

 

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.55 0.11

               0.27(1 ) 0.27 0.51 0.14
1 0.11

( ) ( )
( ) ( ) '( ) ( )(1 )

1 ( )
0.45 0.09

                  0.18(1 0.18 0.60 0.1
1 0.09

i

i

i

i

P B P b
P BB B P BB P B P BB

P b

P W P w
P WW W P WW P W P WW

P w


   




    



   




    


1

 

      
     Corollary 5. The complement of probability on 
an event a A S∈ ⊂  in U, ( )P a , is a special case of 
probability subtraction, i.e.: 
 

 
 

( ) 1 ( )
       ( ) ( ) ( ),  
P a P a

P S P a P S a a E S
= −
= − = − ∈ ⊆

      (34) 

 
 

 
     

Table 4. Formal Rules of Probability Algebra 
 

No. Rule 
 

Invariant sample space  
 ( ' )S S=

 

Variant 
sample space 

 
( ' )S S≠  Unrelated events 

( )A B∩ = ∅  
Related events 

( )A B∩ ≠ ∅  

1 Commutative ( | ) ( | )P b a P a b≠  ≠  ≠  

( ) ( )P a b P b a× = ×   = 

( / ) ( / )P a b P b a≠  ≠  

( ) ( )P a b P b a+ = +   = 

( ) ( )P a b P b a− ≠ −  ≠  

2 Associative ( | ( | )) (( | ) | )P a b c P a b c≠  ≠  ≠  

( ( )) (( ) )P a b c P a b c× × = × ×   = 

( / ( / )) (( / ) / )P a b c P a b c≠  ≠  

( ( )) (( ) )P a b c P a b c+ + = + +   = 

( ( )) (( ) )P a b c P a b c− − ≠ − −  ≠  

3 Distributive ( ( )) (( ) ( ))P a b c P a b a c× + = × + ×   = ≠  

( ( )) (( ) ( ))P a b c P a b a c× − = × − ×   = 

(( ) / ) (( / ) ( / )),  ( ) 0P b c a P b a c a P a+ = + >   = 

(( ) / ) (( / ) ( / )),  ( ) 0P b c a P b a c a P a− = − >   = 

4 Transitive ( ) ( ) ( ) ( ) ( ) ( )P a P b P b P c P a P c= ∧ = ⇒ =   = = 

5 Complement 

 

( ) 1 ( ),        ( ) ( ) 1
( ) 1,                   ( ) 0

( ) 0,                  ( ) 1

P a P a P a P a
P S P

P S P

= − + =
= ∅ =

= ∅ =

    

6 Involution ( ) ( )P a P a=    
7 Idempotent 

 

( ) ( ),    ( ) ( )
( / ) 1,          ( ) 0

P a a P a P a a P a
P a a P a a

× = + =
= − =

   

8 Identity  

     

1

( ) ( ),              ( ) 0
( / ) ( ),               ( / ) ( )
( ) 1,                    ( ) ( )
( ) ( ) ( ), ( / ) 0     
( ) ( ),              ( ) 0

P a S P a P a
P a S P a P S a P a
P a S P a P a
P S a P S P a P a
P a P a P a

−

× = ×∅ =

= =
+ = +∅ =
− = − ∅ =
−∅ = ∅ − =
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6. Formal Properties and Rules of  
    the General Probability Theory 
 

The mathematical model of general probability, the 
framework of the revisited probability theory, and 
the formal operators of probability algebra enable 
rigorous analyses of the nature, properties, and rules 
of probabilities as well as their algebraic operations. 
A set of 36 algebraic properties and rules of 
probability algebra is summarized in Table 4. 
 
     Basic rules of probability algebra in the universe 
of discourse of probability U can be expressed in 
categories of the commutative, associative, 
distributive, transitive, complement, involution, 
idempotent, and identity rules. It is noteworthy that 
it is unnecessary that each of the probability 
operators obeys all the general algebraic rules. Each 
algebraic rule on probability multiplication, 
division, addition, subtraction, conditional, and 
complement operations can be proven by applying 
specific definitions and arithmetic principles. The 
algebraic rules of the probability theory may be 
applied to derive and simply complex probability 
operations in formal probability manipulations and 
uncertainty reasoning by both humans and cognitive 
systems. The framework of the revisited probability 
theory reveals that classic probability theory is a 
special case or subsystem of the revisited 
probability theory in terms of both mathematical 
models and probability operations. 

7. Conclusion 
A revisited theory of probability and a mathematical 
structure of probability algebra have been rigorously 
introduced as an extension of the classic probability 
theory in order to deal with complicated dynamic 
sample spaces as well as complex event relations 
and dependencies. The general probability theory 
has been formally described as a framework of 
hyperstructures of dynamic probability and their 
algebraic operations. Mathematical models and 
formal operators of probability algebra have enabled 
rigorous analyses of the nature, properties, and rules 
of probability theories and their algebraic 
operations.  

It has been found that the conditional 
probability played a centric role in the framework of 
probability theories in order to solve the highly 
coupled problems of cyclic definitions in traditional 
probability theories. It has been proven that Bayes’ 
law may be revisited based on the properties of the 
variant sample spaces as revealed in this paper. This 
work has also led to a theory of fuzzy probability 

that extends the general probability theory onto 
fuzzy probability spaces and fuzzy algebraic 
operations. 
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